Modeling of Aqueous Film Forming Foam (AFFF) Fire Extinguishment Performance

Brian Y. Lattimer, Javier Trelles, Chris Hanauska, and Joe Scheffey

410.737.8677

www.haifire.com

HUGHES ASSOCIATES, INC.
FIRE SCIENCE & ENGINEERING

Jim Milke
Univ. of Maryland
Dept. of Fire Protection Eng.

Fred Williams
Naval Research Lab

Topics

- Background
- Previous work
- Modeling approach
- Equations of motion
 - Source terms and some boundary conditions
- Numerical methods
- 1-D model results
- Next steps in modeling
- Experimental
- Timeline
- Publications

Background

- Alternative agents being developed
 - Environmentally friendly
- Performance evaluation impeding progress
 - Full-scale test required to determine performance
- Lack of understanding of foam extinguishment mechanism
 - Current small-scale tests not measuring all important parameters
 - Performance a function of multiple parameters

Background

- Goals of study
 - Accelerate the evaluation process of foam
 - Develop model
 - Predict full-scale performance of a foam
 - Use / develop small-scale tests
 - Measure performance of specific aspects of foam
 - Drainage, evaporation, spreading characteristics
 - Model input data
 - Near term goal of predicting MIL-SPEC test
 - 28 and 50 ft² MOGAS pool fires

Previous Work

- Swedish National Laboratory and Research Institute (SP)
 - Small-scale tests
 - Drainage and evaporation rates
 - Viscosity of foam
 - Large-scale foam spread tests
 - With and without fire
 - Nozzle characterization
 - Some velocity and mass distribution
 - Modeling
 - Simplified 1-D cases
 - Meshing of 1-D cases for 2-D case

Previous Work

- SP (continued)
 - Conclusion
 - Modeling approach not capable of predicting very large scale tests with hose line application
- Several studies on modeling foam drainage and evaporation
 - Perssons et al. (1992, 1996, 1997), Magrabi, et al. (1997)
- Ablation model for Hi-Ex foams
 - Boyd and Di Marzo (1998)
- Rheology of foam
 - Gardiner et al. (1998)

Modeling Approach

Modeling Approach

Field model

- Model foam spreading
 - Gravity driven flow
 - Hydraulics / hydrology of river flows
- Divide space above fuel into a single layer of cells
 - Cell thickness varies
 - Average properties over height of foam
- Source terms from small-scale test data
 - Solution drainage
 - Solution evaporation
 - Foam addition from nozzle
 - Momentum from nozzle spray
 - Shear force between foam and fuel

Modeling Approach

Thermal modeling

- Radiation from fire to foam
 - Emissive power of fire and configuration factors
- Evaporation of foam dependent on predicted incident flux onto foam
- No predictions of foam temperatures in initial versions
 - Small-scale testing shows no heat transfer to fuel until foam less than 25 mm (1.0 in.) thick

Equations of Motion

Conservation of Mass

$$\frac{\partial(\rho h)}{\partial t} + \frac{\partial(\rho uh)}{\partial x} + \frac{\partial(\rho vh)}{\partial y} = \dot{m}''_{add} - \dot{m}''_{dr} - \dot{m}''_{evap} \equiv \dot{m}''$$
Foam
Added Evaporated

Conservation of Momentum

$$\frac{\partial(\rho uh)}{\partial t} + \frac{\partial}{\partial x} \left(\rho u^2 h + \frac{1}{2}\rho g h^2\right) + \frac{\partial(\rho uvh)}{\partial y} = \rho f_x h$$
Other Body
Forces

$$\frac{\partial(\rho vh)}{\partial t} + \frac{\partial(\rho uvh)}{\partial x} + \frac{\partial}{\partial y} \left(\rho v^2 h + \frac{1}{2}\rho g h^2\right) = \rho f_y h$$

Equations of Motion

- Other body forces
 - Shear between foam and fuel
 - Shear from external air currents
 - Wind
 - Air entrainment into fire
 - Momentum from foam application
 - Surface tension
- Various boundary conditions
 - Effects of obstructions

Numerical Methods

- Hyperbolic set of partial differential equations
 - Unsteady shallow water equation
 - Review Zappou and Roberts (2003?) of different numerical schemes
 - Godnov-type schemes better than finite difference
 - Approximate Riemann solvers
 - 2nd order accurate approximate Riemann solvers
 - High resolution, robust, efficient
 - Optimal for application
 - Weighted Average Flux (WAF) routine implemented
 - 2nd order accurate
 - Robust and efficient

1-D Shallow Water Equation

$$\frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} = 0.$$

$$\frac{\partial(uh)}{\partial t} + \frac{\partial}{\partial x} \left(u^2 h + \frac{1}{2} g h^2 \right) = 0$$

Assumptions

- No source terms
- Constant density

Verification

 Compared against exact solutions to Riemann problem

Dry Bed Problem

Dry Bed Problem

Wet Bed Problem

Wet Bed Problem

Red Sea Problem

Red Sea Problem

Spill

Wave Reflection

Next Steps in Modeling

- Adding in source terms
 - Frictional shear between the flow and the bed
 - Mass losses and gains
 - Validation
- 2-D solutions
 - Validation
- Foam flows

Experimental –Evaporation, Drainage, Suppression

- Static foam layer
 - Evaporation
 - Drainage
 - Time to fuel ignition
 - Suppression model
- Develop simple predictive methods
- Verify predictive methods

Test Apparatus

Monitor mass

- Drained
- Foam
- Calculate evaporated

Radiant Heating

- Up to 60 kW/m²
- Temperature
 - Profile in foam
 - Pan
 - Drained solution
- Heat flux at fuel surface
- Tests with and without fuel
- Time to fuel ignition

Test Conditions

- Foam Height
 - 25, 50, and 75 mm
- Expansion Ratio
 - 3, 6, and 10
- Irradiance
 - 0, 20, 35, and 50 kW/m²
- With and without fuel (JP-5)

Summary of Results

- Increasing irradiance
 - No affect on drainage rate
 - No affect on temperature distribution in foam
 - Decreases time to ignition
 - Increases evaporation rate
- Increasing foam height
 - No affect on evaporation rate
 - Affects drainage rate with time
 - Increases time to ignition
- Increasing expansion ratio
 - No affect on time to ignition
 - Slight affect on evaporation rate
 - Decreases drainage rate

Predicting Evaporation Rate

- Energy balance at foam surface
 - Foam preheated to 100°C
 - Ignore effects of bubble bursting, foam density at surface, transient heating
 - Foam is a gray surface

$$q''_{net} = \dot{m}''_{evap} \Delta h_{v}$$

$$\dot{m}''_{evap} \Delta h_{v} = \alpha_{foam} \frac{q''_{hfg}}{\varepsilon_{hfg}} + \alpha_{foam} \sigma T_{hfg}^{4} - \varepsilon_{foam} \sigma T_{s}^{4}$$

$$\dot{m}''_{evap} = \left(\frac{\alpha_{foam}}{\varepsilon_{hfg}}\right) \left(\frac{q''_{hfg}}{\Delta h_{v}}\right)$$

Predicting Evaporation Rate

Expansion Ratio, <i>ER</i>	Effective Absorptivity, $lpha_{\it foam}$
3	0.34±0.09
6	0.42±0.06
10	0.41±0.04

Expansion Ratio = 6 Initial Height = 75 mm Irradiance = 20, 35, 50 kW/m²

Predicting Mass Drained

Mass drained is related to foam mass on fuel

Predicting Mass Drained

Expansion Ratio = 3 Initial Height = 25, 50, 75 mm Irradiance = 35 kW/m²

Time to Ignition

- Independent of expansion ratio
- Increases with
 - Decrease in irradiance
 - Increase in initial foam height
- Small amount of foam remaining at ignition in all cases
 - $0.86 \text{ kg/m}^2 \text{ or } 35 \text{ g}$
 - 75-97% of initial foam

Evaporation, Drainage and Suppression Models

- Evaporation
 - Effective absorptivity
- Drainage
 - Foam mass to predict drainage rate
 - Develop a reference curve
 - 75 mm thick foam layer
 - Moderate irradiance level (20 kW/m²)
- Suppression
 - Critical foam mass
 - 0.90 kg/m²

Expansion Ratio = 6
Initial Height = 25 and 50 mm
Irradiance = 50 kW/m²

Expansion Ratio = 6
Initial Height = 25 and 50 mm
Irradiance = 50 kW/m²

Expansion Ratio = 3
Initial Height = 25 and 50 mm
Irradiance = 20 kW/m²

Expansion Ratio = 3
Initial Height = 25 and 50 mm
Irradiance = 20 kW/m²

Next Steps in Experimental Work

- State equation for foam
 - Predict density
- Density profile
 - Potential sub-grid refinement of solution
- Effects of foam addition on drainage and evaporation rates
- Foam spreading parameters
 - Frictional shear between foam and fuel
 - Wind shear
 - Nozzle momentum
 - MIL-SPEC nozzle characterization

Accomplishments

- Solved and verified 1-D shallow water equations
- Developed and verified models for foam solution mass drained and evaporated
- Developed model for fuel ignition
- Developed theoretical models for some source terms
 - Frictional shear for non-newtonian fluids
 - Wind shear

Timeline for FY 03

TAS	SK		Feb	Mar	April	May	June	July	Aug	Sept
1 Spreading Model										
	-1	Source Terms								
		2-D								
	-3	Foam Flows								
2		tic Small-Scale Testing								
		State Equation for Foam								
		Density Profile								
	-3	Effects of Foam Addition (UMD))							
3 Foam Spread Testing										
		Foam-Fuel Shear								
	-2	Wind Shear								
	-3	Nozzle Momentum (UMD)								
4	MIL	-SPEC Nozzle Characterization	(UMD)						
		Density Distribution								
	-2	Velocity and Foam Drop Size								

Timeline for FY04

TASK		Nov	Dec	Jan	Feb	Mar	April	June	July	Aug	Sept
1 Spreading Model											
-1 Foam Flows											
-2 Validation with MIL SPEC Test											
-3 Predictions of Larger Fires											
2 Static Small-Scale Testing											
-1 Effects of Foam Addition (UMD)											
-2 Data for AFFF using Nozzle											
3 Foam Spread Testing											
-1 Data for AFFF using Nozzle											
4 MIL-SPEC Nozzle Characterization(UM	D)										
-1 Density Distribution											
-2 Velocity and Foam Drop Size											
5 Other Nozzle Characterizations (UMD)											
-1 Density Distribution											
-2 Velocity and Foam Drop Size											
6 Large Scale Fire Suppression Testing	(NRL)									
-1 MIL SPEC 28 and 50 ft ²											
-2 Larger Fire Tests											

Publications

Journal Articles

 Lattimer, Hanauska, Scheffey, and Williams, 2003, "The Use of Small-Scale Test Data to Characterize Some Aspects of Firefighting Foam for Suppression Modeling", Fire Safety Journal, in press.

Conference Proceedings

 Lattimer, 2003, "Modeling AFFF", Proceedings of the Workshop on Fire Suppression Technologies, February 25-26, Mobile, Alabama.

Drainage and Evaporation Rate

Expansion Ratio = 6 Initial Height = 75 mm Irradiance = 0, 20, 35, 50 kW/m²

Foam Height and Temperature

Expansion Ratio = 6 Initial Height = 75 mm Irradiance = 0, 20, 35, 50 kW/m²

Drainage and Evaporation Rate

Expansion Ratio = 6 Initial Height = 25, 50, 75 mm Irradiance = 35 kW/m²

Drainage and Evaporation Rate

Expansion Ratio = 3 Initial Height = 25, 50, 75 mm Irradiance = 35 kW/m²

Predicting Mass Drained

Expansion Ratio = 6 Initial Height = 75 mm Irradiance = 0, 20, 35, 50 kW/m²

